Solvability of dissipative second order left-invariant differential operators on the Heisenberg group

نویسنده

  • Detlef Müller
چکیده

We prove local solvability for large classes of operators of the form

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-solvability for a Class of Left-invariant Second-order Differential Operators on the Heisenberg Group

We study the question of local solvability for second-order, leftinvariant differential operators on the Heisenberg group Hn, of the form

متن کامل

Local Solvability for a Class of Partial Differential Operators with Double Characteristics

We say that a linear partial differential operator L is locally solvable at the origin if there exists an open neighborhood V of 0 such that for every f ∈ C 0 (V ) there exists u ∈ D(V ) satisfying Lu = f in V . Elliptic (linear) partial differential operators are always locally solvable, as are many others. The example ∂x + i(∂y + x∂t) of Lewy [10] demonstrated that local solvability does not ...

متن کامل

Linear differential operators on contact manifolds

We consider differential operators between sections of arbitrary powers of the determinant line bundle over a contact manifold. We extend the standard notions of the Heisenberg calculus: noncommutative symbolic calculus, the principal symbol, and the contact order to such differential operators. Our first main result is an intrinsically defined “subsymbol” of a differential operator, which is a...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003